Quality Control for the Future:
Risk Assessment in Laboratory Practice
Curtis A. Parvin, Ph.D.
Manager of Advanced Statistical Research
Quality Systems Division
American Statistical Association (ASA) T-Shirt

Statistics

is never having to say you're certain...
In *God* We Trust...
All Others Bring Data.
EP23: Figure 5. Risk Assessment

Hazard Identification
- Create a process map
- Identify potential failures in each process step
- Determine mechanisms in place to prevent or detect a failure

Risk Estimation
- Assess the likelihood or probability of harm for each failure
- Assess the severity of harm to a patient from each failure

Risk Control
- What control processes are needed to lower risk to an acceptable level

Risk Estimation
- Is the residual risk of harm clinically acceptable
 - **No**
 - **Yes**

The Laboratory’s QCP
- Compile set of QC process into QCP
- Review QCP for conformance to regulatory and accreditation requirements
- Document and implement the set of control processes as the laboratory’s QCP
EP23: Figure 5. Risk Assessment

<table>
<thead>
<tr>
<th>Hazard Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Create a process map</td>
</tr>
<tr>
<td>• Identify potential failures in each process step</td>
</tr>
<tr>
<td>• Determine mechanisms in place to prevent or detect a failure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assess the likelihood or probability of harm for each failure</td>
</tr>
<tr>
<td>• Assess the severity of harm to a patient from each failure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>What control processes are needed to lower risk to an acceptable level</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the residual risk of harm clinically acceptable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The Laboratory’s QCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Compile set of QC process into QCP</td>
</tr>
<tr>
<td>• Review QCP for conformance to regulatory and accreditation requirements</td>
</tr>
<tr>
<td>• Document and implement the set of control processes as the laboratory’s QCP</td>
</tr>
</tbody>
</table>
Sequence of Events Creating Risk of Harm for a Patient (Example)

Hazardous Situation

- P1: Initiating cause
- P2: Testing process failure
- P3: Incorrect result generated
- P4: Incorrect result reported
- P5: Misdiagnosis
- P6: Hazardous medical action
- Patient harmed

EP23-A, Figure 6

EP23 states:
- quantitative estimates of the probabilities in the sequence leading to patient harm are desirable,
- but may not be easily quantifiable.
Probability of Harm

• If probability estimates are not easily quantifiable, EP23 suggests using descriptive categories such as

- Frequent = once per week
- Probable = once per month
- Occasional = once per year
- Remote = once every few years
- Improbable = once in the life of the measuring system

EP23-A 7.2.1

• Note, these are rates of occurrence not probabilities
<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiating cause</td>
<td>Testing process failure</td>
<td>Incorrect result generated</td>
<td>Incorrect result reported</td>
<td>Misdiagnosis</td>
<td>Hazardous medical action</td>
</tr>
</tbody>
</table>

Estimating Probability of Harm
Estimating Probability of Harm

- Frequent = once per week
- Probable = once per month
- Occasional = once per year
- Remote = once every few years
- Improbable = once in the lifetime of the measuring system

Is this the best we can do?
Estimating Probability of Harm

- P1: The probability that a testing process failure occurs

Diagram:

- P1: Initiating cause
 - P2: Testing process failure
 - P3: Incorrect result generated
 - P4: Incorrect result reported
 - P5: Misdiagnosis
 - P6: Hazardous medical action
 - Patient harmed
P1: Probability of a Failure Mode

- P1 = how likely is a given failure mode going to occur

 or more commonly

- P1 can be the mean time between failures (MTBF)

 Information regarding MTBF may come from
 - Manufacturer
 - Historical failure data
 - Literature

- MTBF can be converted to mean number of patient results between failures (MPBF)
 - MTBF = 30 days
 - 150 patient results examined per day (on average)
 - MPBF = 30 * 150 = 4500 patient results
Estimating Probability of Harm

• P2: The probability that a testing process failure generates incorrect patient results
P2: Probability of Producing an Incorrect (Unreliable) Result

- The number of unreliable patient results produced during the existence of an out-of-control condition depends on
 - The quality required for patient results
 - The type and magnitude of the out-of-control condition
 - The power to detect the out-of-control condition
 - When (how often) QC evaluations are performed

- An out-of-control condition may result in many unreliable patient results being produced
• ISO 15189 Clause 5.6.1: *Laboratory QC should assure that patient results meet the quality required for their intended use*

• The quality of a patient result depends on the difference between the correct value and the value reported.

• If the error in a patient’s result exceeds the allowable total error (T_{E_a})
 • The result is considered unreliable (or incorrect).
 • It creates a hazardous situation for the patient.
Probability of an Unreliable Result Due to a Systematic Error Condition
The number of unreliable patient results produced during an out-of-control condition (red asterisks) will depend on:

- The magnitude of the out-of-control condition
- The power of the QC rule – Detection
- The number of patient specimens between QC events

\[E(N_u) = \text{Expected number of unreliable patient results generated during an out-of-control condition} \]
Estimating Probability of Harm

- P3: The probability that incorrect results that are generated will be reported.
The probability of reporting an unreliable result that leads to an incorrect action depends on:

- The number of unreliable results produced because of an out-of-control condition
- How and when results are reported
- The likelihood of identifying and correcting a reported unreliable result before an incorrect action is taken
• The patient results produced during an out-of-control condition can be divided into
 • Results prior to the last accepted QC event (Pre)
 • Results since the last accepted QC event (Post)
 • Bracketed QC: results aren’t reported
 • Immediate reporting: results should be repeated and updated in a timely fashion

• $E(N_{uf}) =$ Expected number of unreliable “final” results
• $E(N_{uc}) =$ Expected number of unreliable “correctable” results
Estimating Probability of Harm

- P4: The probability that an incorrect result leads to a misdiagnosis
- P5: The probability that a misdiagnosis leads to a hazardous medical action
- P6: The probability that a hazardous medical action leads to patient harm

- $P_4 \times P_5 \times P_6$: The probability than an incorrect result leads to patient harm
The probabilities (P4, P5, P6) are associated with activities outside the laboratory.

Their product equals the probability of patient harm given that an unreliable result has been reported:

\[P_{h|u} = P4 \times P5 \times P6 \]

EP23 says;
- “medical judgment is used to estimate the overall probability of harm due to receiving an incorrect result”
 - Medical literature
 - Consultation
Estimating Probability of Harm

MPBF | E(N_u) | E(N_ufr) | P4 | P5 | P6

Initiating cause → Testing process failure → Incorrect result generated → Incorrect result reported → Misdiagnosis → Hazardous medical action → Patient harmed
Estimating Probability of Harm

- Initiating cause
- Testing process failure
- Incorrect result generated
- Incorrect result reported
- Patient harmed

MPBF, $E(N_u)$, $E(N_{uf})$, $P_{h|u}$
Risk Management

Statistical QC

- MPBF
 - Initiating cause
 - Testing process failure
 - E(N_u)
 - Incorrect result generated
 - E(N_ufr)
 - Incorrect result reported
 - P_hlu
 - Patient harmed
• Probability of patient harm is
 • The expected number of patients harmed due to incorrect results from a failure mode: $P_{h|u} \times E(N_{uf})$
 • Divided by the average number of patient results examined between failure mode occurrences: MPBF

\[
\text{Probability of Harm} = \frac{P_{h|u} \times E(N_{uf})}{\text{MPBF}}
\]
A quantitative assessment of the probability of harm can be obtained by combining:

- Risk Management activities
 - the rate of occurrence of identified failure modes
 - the probability of harm from an incorrect reported result
- Statistical QC design
 - the expected number of incorrect results reported due to the occurrence of a failure mode
Estimating Risk vs Reducing Risk

<table>
<thead>
<tr>
<th></th>
<th>Estimate Risk</th>
<th>Reduce Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of Occurrence of Failure Modes</td>
<td>Yes: manufacturer info, technical bulletins, product alerts</td>
<td>Some: lab environment/processes training</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Very little: Medical devices</td>
</tr>
<tr>
<td>Number of Incorrect Results Reported</td>
<td>Yes: Statistical QC design & evaluation</td>
<td>A lot: Detection in analytical phase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A little: Detection in pre- and post-analytical phases</td>
</tr>
<tr>
<td>Probability of Harm from an Incorrect Result</td>
<td>Yes: Medical literature, medical judgment, consultation</td>
<td>Very little: Report formatting, education</td>
</tr>
</tbody>
</table>
Summary

• The laboratory has two main mechanisms to estimate and reduce the risk of patient harm:
 1. Identify as many potential failure modes as possible and seek ways to reduce occurrences of the identified failure modes

 Risk management

 2. Implement QC strategies that minimize the number of incorrect patient results that are reported when a failure mode does occur

 Statistical QC

 • The combination enables a laboratory to address the full spectrum of patient risk implications for their operations